Time-Resolved Electron Holography by Interference Gating
نویسندگان
چکیده
منابع مشابه
Time-resolved detection of single-electron interference.
We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to...
متن کاملTime-resolved holography with photoelectrons.
Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a free-electron laser. Holographic structures...
متن کاملRole of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.
Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wav...
متن کاملProspects for quantitative and time-resolved double and continuous exposure off-axis electron holography.
The technique of double exposure electron holography, which is based on the superposition of two off-axis electron holograms, was originally introduced before the availability of digital image processing to allow differences between electron-optical phases encoded in two electron holograms to be visualised directly without the need for holographic reconstruction. Here, we review the original me...
متن کاملTime Resolved Relativistic Electron Diffraction
We report on the use of a ultrashort high brightness relativistic beam from the UCLA Pegasus laboratory RF photoinjector source for probing matter transformation at the atomic scale with sub-100 fs time resolution. The high accelerating gradient and the relativistic electron energy allow to pack more than 107 electrons in less than 100 fs bunch length, enabling the study of irreversible ultrafa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2018
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927618009856